| 000 | 01336camuu2200325 a 4500 | |
| 001 | 000045818336 | |
| 005 | 20141215091348 | |
| 008 | 141212s2014 flua b 001 0 eng | |
| 010 | ▼a 2013047327 | |
| 020 | ▼a 9781466517158 (hardcover : alk. paper) | |
| 035 | ▼a (KERIS)REF000017387177 | |
| 040 | ▼a DLC ▼b eng ▼c DLC ▼e rda ▼d DLC ▼d 211009 | |
| 050 | 0 0 | ▼a QA278.2 ▼b .A76 2014 |
| 082 | 0 0 | ▼a 320.0285/5133 ▼2 23 |
| 084 | ▼a 320.0285 ▼2 DDCK | |
| 090 | ▼a 320.0285 ▼b A532 | |
| 245 | 0 0 | ▼a Analyzing spatial models of choice and judgment with R / ▼c David A. Armstrong II ... [et al.]. |
| 260 | ▼a Boca Raton, FL : ▼b CRC Press, Taylor & Francis Group, ▼c 2014. | |
| 300 | ▼a xx, 336 p. : ▼b ill. ; ▼c 25 cm. | |
| 490 | 1 | ▼a Chapman & Hall/CRC statistics in the social and behavioral sciences series |
| 504 | ▼a Includes bibliographical references (p. 311-329) and index. | |
| 650 | 0 | ▼a Spatial analysis (Statistics) |
| 650 | 0 | ▼a Spatial behavior ▼x Mathematical models. |
| 650 | 0 | ▼a Spatial behavior ▼x Political aspects. |
| 650 | 0 | ▼a Legislative bodies ▼x Voting ▼x Data processing. |
| 650 | 0 | ▼a R (Computer program language) |
| 700 | 1 | ▼a Armstrong, David A., ▼c II, ▼d 1976-. |
| 830 | 0 | ▼a Chapman & Hall/CRC statistics in the social and behavioral sciences series. |
| 945 | ▼a KLPA |
소장정보
| No. | 소장처 | 청구기호 | 등록번호 | 도서상태 | 반납예정일 | 예약 | 서비스 |
|---|---|---|---|---|---|---|---|
| No. 1 | 소장처 중앙도서관/서고6층/ | 청구기호 320.0285 A532 | 등록번호 111727926 (2회 대출) | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
| No. 2 | 소장처 의학도서관/자료실(3층)/ | 청구기호 320.0285 A532 | 등록번호 131050345 | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
| No. | 소장처 | 청구기호 | 등록번호 | 도서상태 | 반납예정일 | 예약 | 서비스 |
|---|---|---|---|---|---|---|---|
| No. 1 | 소장처 중앙도서관/서고6층/ | 청구기호 320.0285 A532 | 등록번호 111727926 (2회 대출) | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
| No. | 소장처 | 청구기호 | 등록번호 | 도서상태 | 반납예정일 | 예약 | 서비스 |
|---|---|---|---|---|---|---|---|
| No. 1 | 소장처 의학도서관/자료실(3층)/ | 청구기호 320.0285 A532 | 등록번호 131050345 | 도서상태 대출가능 | 반납예정일 | 예약 | 서비스 |
컨텐츠정보
책소개
Modern Methods for Evaluating Your Social Science Data
With recent advances in computing power and the widespread availability of political choice data, such as legislative roll call and public opinion survey data, the empirical estimation of spatial models has never been easier or more popular. Analyzing Spatial Models of Choice and Judgment with R demonstrates how to estimate and interpret spatial models using a variety of methods with the popular, open-source programming language R.
Requiring basic knowledge of R, the book enables researchers to apply the methods to their own data. Also suitable for expert methodologists, it presents the latest methods for modeling the distances between points?not the locations of the points themselves. This distinction has important implications for understanding scaling results, particularly how uncertainty spreads throughout the entire point configuration and how results are identified.
In each chapter, the authors explain the basic theory behind the spatial model, then illustrate the estimation techniques and explore their historical development, and finally discuss the advantages and limitations of the methods. They also demonstrate step by step how to implement each method using R with actual datasets. The R code and datasets are available on the book’s website.
정보제공 :
목차
Introduction The Spatial Theory of VotingSummary of Data Types Analyzed by Spatial Voting Models The Basics Data Basics in RReading Data in R Writing Data in R Analyzing Issue Scales Aldrich-McKelvey ScalingBasic Space Scaling: The blackbox FunctionBasic Space Scaling: The blackbox transpose FunctionAnchoring Vignettes Analyzing Similarities and Dissimilarities Data Classical Metric Multidimensional Scaling Non-Metric Multidimensional Scaling Bayesian Multidimensional Scaling Individual Differences Multidimensional Scaling Unfolding Analysis of Rating Scale Data Solving the Thermometers Problem Metric Unfolding Using the MLSMU6 Procedure Metric Unfolding Using Majorization (SMACOF) Bayesian Multidimensional Unfolding Unfolding Analysis of Binary Choice Data The Geometry of Legislative Voting Reading Legislative Roll Call Data into R with the pscl PackageParametric Methods?NOMINATEMCMC or a-NOMINATE Parametric Methods?Bayesian Item Response TheoryNonparametric Methods?Optimal Classification Advanced TopicsUsing Latent Estimates as Variables Ordinal and Dynamic IRT Models Conclusion and Exercises appear at the end of each chapter.
정보제공 :
