HOME > 상세정보

상세정보

Modern physics and quantum mechanics

Modern physics and quantum mechanics (10회 대출)

자료유형
단행본
개인저자
Anderson, Elmer E., 1922-
서명 / 저자사항
Modern physics and quantum mechanics / [by] Elmer E. Anderson.
발행사항
Philadelphia :   Saunders,   c1971.  
형태사항
xi, 430 p. : illus. ; 26 cm.
ISBN
0721612202
일반주기
Reprinted in Korea  
서지주기
Includes bibliographies.
일반주제명
Quantum theory.
000 00717camuuu200241 4500
001 000000062716
005 19980804142227.0
008 710629s1971 paua b 00110 eng
010 ▼a 77145554
020 ▼a 0721612202
040 ▼a 211009 ▼c 211009
049 1 ▼l 421021065 ▼f 과학 ▼l 421035483 ▼f 과학 ▼l 422415361 ▼f 과학
050 0 ▼a QC174.1 ▼b .A527
082 0 4 ▼a 530.1/2
090 ▼a 530.12 ▼b A546m
100 1 0 ▼a Anderson, Elmer E., ▼d 1922-
245 1 0 ▼a Modern physics and quantum mechanics / ▼c [by] Elmer E. Anderson.
260 0 ▼a Philadelphia : ▼b Saunders, ▼c c1971.
300 ▼a xi, 430 p. : ▼b illus. ; ▼c 26 cm.
500 ▼a Reprinted in Korea
504 ▼a Includes bibliographies.
650 0 ▼a Quantum theory.

No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 530.12 A546m 등록번호 421021065 (4회 대출) 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 2 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 530.12 A546m 등록번호 421035483 (5회 대출) 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 3 소장처 과학도서관/보존서고2(서양서)/ 청구기호 530.12 A546m 등록번호 422415361 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 4 소장처 세종학술정보원/과학기술실(5층)/ 청구기호 530.12 A545m 등록번호 452012539 (1회 대출) 도서상태 대출불가(자료실) 반납예정일 예약 서비스 M ?
No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 530.12 A546m 등록번호 421021065 (4회 대출) 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 2 소장처 과학도서관/Sci-Info(2층서고)/ 청구기호 530.12 A546m 등록번호 421035483 (5회 대출) 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 3 소장처 과학도서관/보존서고2(서양서)/ 청구기호 530.12 A546m 등록번호 422415361 도서상태 대출가능 반납예정일 예약 서비스 B M
No. 소장처 청구기호 등록번호 도서상태 반납예정일 예약 서비스
No. 1 소장처 세종학술정보원/과학기술실(5층)/ 청구기호 530.12 A545m 등록번호 452012539 (1회 대출) 도서상태 대출불가(자료실) 반납예정일 예약 서비스 M ?

컨텐츠정보

책소개

Book by Anderson, Elmer


정보제공 : Aladin

목차


CONTENTS
Chapter 1 THE SPECIAL THEORY OF RELATIVITY = 1
  1. Classical Principle of Relativity : Galilean Transformation = 1
  2. Electromagnetic Theory and the Galilean Transformation = 3
  3. The Michelson-Morley Experiment = 6
  4. The Postulates of Special Relativity = 8
  5. The Lorentz Transformation = 9
  6. Relativistic Kinematics = 10
  7. Relativistic Dynamics = 15
  8. Four-Vector Notation = 21
  9. Relativistic Collisions = 27
  10. The Creation and Annihilation of Particles = 32
  11. The Relativistic Doppler Shift = 35
  12. Geometric Representations = 38
  Summary = 41
  Suggested References = 42
Chapter 2 THE BEGINNINGS OF THE QUANTUM THEORY = 43
  1. Blackbody Radiation = 43
  2. The Rayleigh-Jeans Theory = 45
  3. Planck's Quantum Theory of Radiation = 46
  4. Einstein's Transition Probabilities = 50
  5. The Particle Nature of Photons = 54
  6. The Photoelectric Effect = 54
  7. The Compton Effect = 57
  8. The Dual Nature of the Photon = 60
  9. The Heisenberg Uncertainty Principle = 62
  Summary = 64
APPENDICES A to C = 65
  Appendix A. Calculation of Jeans' Number = 65
  Appendix B. The Maxwell-Boltzmann Distribution Function = 67
  Appendix C. The Maxwell Velocity Distribution Function = 70
  Suggested References = 72
Chapter 3 THE CONCEPT OF THE NUCLEAR ATOM = 73
  1. The Atomic Models of Thomson and Rutherford = 73
  2. Classical Scattering Cross Sections = 75
  3. Scattering Cross Sections in the C and L Frames = 80
  4. Bohr's Theory of Atomic Spectra = 83
  5. The Franck-Hertz Experiment = 88
  6. X-ray Spectra and the Bohr Theory = 89
  7. Nuclear Structure and Spectroscopy = 92
  8. Fundamental Forces and Exchange Particles = 99
  9. Angular Momenta and Magnetic Moments = 101
  10. The Larmor Theorem and the Normal Zeeman Effect = 104
  11. Spatial Quantization = 107
  Summary = 110
  Suggested References = 110
Chapter 4 THE DEVELOPMENT OF WAVE MECHANICS = 111
  1. Introduction = 111
  2. The Old Quantum Theory : Wilson-Sommerfeld Quantization Rules = 112
  3. Sommerfeld's Relativistic Theory of the Hydrogen Atom = 114
  4. The Wave Nature of Particles = 120
  5. The Diffraction of Particles = 121
  6. The Wave Function for an Electron = 126
  7. The Fourier Integral and the Delta Function = 130
  8. Particles as Wave Packets = 135
  9. The Schr o ·· dinger Wave Equation = 141
  10. The Conservation of Probability Density = 143
  11. Observables, Operators, and Expectation Values = 146
  12. Separation of Space and Time in the Schr o ·· dinger Equation : Energy Eigenvalues = 150
  13. Dirac Bracket Notation = 154
  Summary = 154
APPENDIX A = 156
  Appendix A. Natural Units = 156
  Suggested References = 157
Chapter 5 SOLUTIONS OF SOME ONE DIMENSIONAL SYSTEMS = 158
  1. Step Potentials = 158
  2. The Finite Potential Barrier = 162
  3. The Square Well in One Dimension = 167
  4. Multiple Square Wells = 174
  5. The Harmonic Oscillator : Polynomial Solution = 176
  6. Methods of Generating the Hermite Polynomials = 180
  7. Normalization of the Harmonic Oscillator Wave Functions = 183
  8. Applications to Molecular Vibrations = 189
  9. The Harmonic Oscillator : Operator Method = 191
  10. Expectation Values in the Operator Formalism = 200
  Suggested References = 202
Chapter 6 THE FORMAL STRUCTURE OF QUANTUM MECHANICS = 201
  1. The Postulates of Quantum Mechanics = 204
  2. Measurements of Compatible Observables : Commuting Operators= 212
  3. Linear Vector Spaces = 215
  4. The Schmidt Orthogonalization Procedure = 218
  5. Linear Transformations = 220
  6. Dirac Bra-ket Notation = 221
  7. Matrix Representations of Linear Operators = 224
  8. The Matrix Form of the Eigenvalue Problem = 230
  9. Change of Basis : Unitary Transformations = 232
  10. Diagonalization of Matrices = 235
  11. Application of Matrix Mechanics to the Harmonic Oscillator = 240
  Summary = 243
  Suggested References = 244
Chapter 7 THE WAVE EQUATION IN THREE DIMENSIONS = 246
  1. Rectangular Coordinates in Three Dimensions = 246
  2. Spherically Symmetric Potentials = 248
  3. The Angular Momentum Operators = 252
  4. Eigenvalues of the Angular Momentum Operators = 257
  5. The Angular Momentum Eigenfunctions = 261
  6. Normalization of the Angular Momentum Eigenfunctions = 264
  7. The Angular Momentum Matrices = 268
  8. Hydrogenic Atoms = 272
  9. Magnetic Moments of Hydrogenic Electrons = 282
  10. The Parity Operator = 284
  Summary = 286
APPENDIX A = 288
  Suggested References = 288
Chapter 8 SPIN, ADDITION OF ANGULAR MOMENTA, AND IDENTICAL PARTICLES = 289
  1. Spin in the Schr o ·· dinger Formulation = 290
  2. The Spin-orbit Interaction = 293
  3. The Vector Model for Combining Angular Momenta = 295
  4. Additional Interactions in the One-electron Problem = 300
  5. Identical Particles, Exchange, and Symmetry = 302
  6. Exchange Degeneracy and Exchange Energy = 307
  7. The Periodic Chart and Many-electron Atoms = 309
  8. Angular Momentum Vector Coupling Schemes = 311
  9. The Land e · g Factor and the Zeeman. Effect = 315
  10. Eigenfunctions of Coupled Angular Momenta = 321
  11. Application to Two-particle Spin Functions = 326
  12. Applications to Systems of Identical Particles = 328
  Summary = 331
APPENDICES A to C = 333
  Appendix A. The Distribution Functions Resulting from Quantum Statistics = 333
  Appendix B. Ground State Electron Configurations for the Elements = 335
  Appendix C. Answers to Selected Problems = 337
  Suggested References = 338
Chapter 9 APPROXIMATION METHODS AND APPLICATIONS = 339
  1. Perturbation Theory for Stationary States = 339
  2. Applications of the Perturbation Method to Non-degenerate States = 343
  3. Interactions of a Charged Particle with Static Electric and Magnetic Fields = 349
  4. Perturbation Theory tor Degenerate States = 354
  5. Time-dependent Perturbation Theory = 357
  6. Perturbations That Are Harmonic in Time = 359
  7. Adiabatic and Sudden Perturbations = 366
  8. The Variational Method = 369
  9. The JWKB Semiclassical Approximation = 371
  Summary = 377
  Suggested References = 377
Chapter 10 ADDITIONAL APPLICATIONS = 379
  1. The Ground State of the Helium Atom = 379
  2. The Lowest Excited States of Helium = 383
  3. The Heisenberg Exchange Interaction and Magnetism = 386
  4. The Hartree Self-consistent Method for Multi-electron Atoms = 387
  5. The Thomas-Fermi Statistical Model of the Atom = 388
  6. The Hydrogen Molecule : The Covalent Bond = 390
  7. Magnetic Susceptibility of an Atom =392
  Suggested References = 395
Chapter 11 SCATTERING THEORY = 396
  1. The Partial Wave Treatment of Scattering = 396
  2. Scattering As a Perturbation : The Born Approximation = 402
  3. The Green's Function Method for Scattering = 406
  4. Scattering of Electrons by Atoms = 409
  5. The Effects of Exchange Symmetry and Spin on Scattering Cross Sections = 411
  Summary = 412
  Suggested References = 412
EPILOGUE = 413
AUTHOR INDEX = 415
SUBJECT INDEX = 119

관련분야 신착자료

Gribbin, John (2025)
Halliday, David (2025)