CONTENTS
Preface = ⅸ
Chapter Ⅰ Introduction = 1
Chapter Ⅱ Basic Concepts in Crystals = 9
2-1. Direct and Reciprocal Lattices = 10
2-2. Crystal Planes Directions = 14
2-3. Crystal Symmetries = 16
2-4. Energy Bands and Bloch Wave Functions = 23
2-5. Tight-Binding Modef for Energy Bands = 27
2-6. Effective Mass = 34
2-7. Classification of Solids = 37
2-8. Occupation Probability and Density of States = 39
2-9. Electrons and Holes = 46
2-10. Problems = 49
2-11. References = 51
Chapter Ⅲ Basic Concepts of Optical Response = 52
3-1. Dispersion Relation = 52
3-2. Oscillator Model = 57
3-3. Kramers-Kronig Transformations = 62
3-4. Experimental Techniques to Obtain Optical Constants = 64
3-5. Plasma Oscillations and Plasmons = 68
3-6. Surface Plasmons = 72
3-7. Optical Excitation of Surface Plasmons = 78
3-8. Problems = 80
3-9. References = 81
Chapter Ⅳ Optical Properties of Phonons = 82
4-1. Optical and Acoustical Phonons = 82
4-2. Optical Excitation of Phonons = 91
4-3. Phonon Polaritons = 97
4-4. Light Scattering = 99
4-5. Coherent Raman Spectroscopy = 105
4-6. Problems = 108
4-7. References = 109
Chapter Ⅴ Linear Optical Properties of Semiconductors: Free Electron-Hole Pairs = 110
5-1. Direct- and Indirect-Gap Semiconductors = 110
5-2. Free Electron-Hole-Pair Absorption = 115
5-3. Direct Transitions = 125
5-4. Indirect Transitions = 127
5-5. Pressure and Temperature Dependence of the Bandgap= 132
5-6. Problems = 134
5-7. References = 136
Chapter Ⅵ Linear Optical Properties of Semiconductors: Excitons = 137
6-1. The Wannier Equation = 138
6-2. Exciton Absorption = 145
6-3. Exciton Luminescence = 156
6-4. Bound Excitons = 162
6-5. Exciton Polaritons = 165
6-6. Problems = 167
6-7. References = 168
Chapter Ⅶ Optical Properties of Some Important Bulk Semiconductors = 169
7-1. Gallium Arsenide - GaAs = 169
7-2. Cuprous Oxide - Cu₂O = 174
7-3. Cuprous Chloride - CuCl = 178
7-4. Cadmium Sulfide - CdS = 180
7-5. Silicon (Si) and Germanium (Ge) = 182
7-6. References = 186
Chapter Ⅷ Quasi- Two -Dimensional Semiconductors: Quantum Wells and Superlattices= 188
8-1. Electronic States for Infinite Potential Barriers = 190
8-2. Electronic States for Finite Potential Barriers = 198
8-3. Density of States in Two Dimensions = 205
8-4. Excitons in Two Dimensions = 210
8-5. Optical Absorption in Two Dimensions = 213
8-6. GaAs-AlGaAs Multiple Quantum Wells = 218
8-7. Absorption Anisotropy in GaAs MQWs = 223
8-8. Type-Ⅰ and Type-Ⅱ Quantum Wells = 224
8-9. Semiconductor Superlattices and Minibands = 227
8-10. Semiconductor Doping Superlattices (n-i-p-i Structures) = 230
8-11. Problems = 232
8-12. References = 233
Chapter Ⅸ Quasi-One- and Zero - Dimensional Semiconductors: Quantum Wires and Quantum Dots = 235
9-1. Density of States in One-Dimensional Semiconductors = 235
9-2. Optical Absorption in Quantum Wires = 239
9-3. Density of States in Zero -Dimensional Semiconductors = 244
9-4. Optical Absorption in Quantum Dots = 245
9-5. Semiconductor Quantum Dots in Glass = 250
9-6. Problems = 253
9-7. References = 253
Chapter Ⅹ Electro-Optical Properties of Semiconductors = 254
10-1 Franz-Keldysh Effect = 254
10-2 DC-Stark Effect = 259
10-3. Electric Field Effects in Two Dimensions: Quantum-Confined Franz-Keldysh and Quantum - Confined Stark Effects = 264
10-4. Problems = 268
10-5. References = 268
Chapter XI Two-Photon Absorption Spectroscopy = 270
11-1. Selection Rules for Two-Photon Spectroscopy = 270
11-2. Examples of Two-Photon Absorption Spectra in Bulk Semiconductors = 277
11-3. Quantum-Well Structures = 279
11-4. Quantum Dots = 283
11-5. Problems = 286
11-5. References = 286
Chapter XII Biexcitons, Electron-Hole Liquid, and Plasma = 288
12-1. Biexcitons or Excitonic Molecules = 289
12-2. Biexciton Two-Photon Absorption = 290
12-3. Biexciton Luminescence = 292
12-4. Biexciton Gain and Lasing = 295
12-5. Bose-Einstein Condensation of Biexcitons = 296
12-6. Electron-Hole Liquid = 300
12-7. Luminescence of Electron-Hole Liquid = 306
12-8. Thermodynamics of the Electron-Hole Liquid = 309
12-9. Electron-Hole Plasma = 310
12-10. Problems = 312
12-11. References = 313
Chapter XIII Semiconductor Optical Nonlinearities = 315
13-1. Classification of Optical Nonlinearities = 316
13-2. Plasma Screening = 317
13-3. Exciton Ionization = 324
13-4. Bandfilling = 328
13-5. Bandgap Renormalization = 330
13-6. Thermal Nonlinearities = 333
13-7. Theory of Nonlinearities: Semiconductor Bloch Equations = 335
13-8. Optical Nonlinearities of Quantum Wells and Quantum Dots = 337
13-9. Transient Nonlinearities: Optical Stark Effect = 339
13-10. X³ Formalism = 340
13-11. Two-Photon Absorption Nonlinearity for Optical Limiting = 342
13-12. Problems = 344
13-13. References = 345
Chapter XIV Measurement Techniques of Optical Nonlinearities = 347
14-1. Pump-Probe Spectroscopy = 347
14-2. An Example of Bulk Semiconductor Nonlinearities = 350
14-3. An Example of Quantum Well Nonlinearities = 351
14-4. An Example of Quantum Dot Nonlinearities = 352
14-5. An Example of Transient Nonlinearity = 355
14-6. Nonlinear Interferometry = 356
14-7. Beam-Distortion Technique = 358
14-8. Four-Wave Mixing = 361
14-9. Optical-Phase Conjugation = 369
14-10. Problems = 373
14-11. References = 373
Chapter XV Femtosecond Spectroscopy = 376
15-1. Femtosecond Pulse Generation = 376
15-2. Pulse-Duration Measurement = 380
15-3. Femtosecond Pump-Probe Spectroscopy = 383
15-4. Semiconductor Bloch Equations = 385
15-5. Spectral Hole Burning and Exciton Bleaching = 387
15-6. Optical Stark Effect = 391
15-7. Coherent Oscillations = 392
15-8. Photon Echo = 395
15-9. Problems = 397
15-10. References = 398
Chapter XVI All-Optical Nonlinear Devices = 399
16-1. Optical Bistability = 399
16-2. Nonlinear Optical Logic Gates = 405
16-3. Gain and Cascading in Nonlinear Etalons = 408
16-4. Asymmetric Fabry-Perot Modulators = 412
16-5. All-Optical Waveguide Devices = 414
16-6. Trade-Offs of All-Optical Devices = 418
16-7. Problems = 420
16-8. References = 420
Chapter XVII Semiconductor Laser = 422
17-1. Doping = 423
17-2. Chemical Potential for Doped Semiconductors = 426
17-3. p-n Junctions and Biasing = 430
17-4. Semiconductor Laser = 433
17-5. Rate Equations = 437
17-6. Problems = 440
17-7. References = 441
Chapter XVIII Optoelectronic Devices = 442
18-1. Bistable Self-Electro-Optic Devices = 442
18-2. Quantum Well Modulators = 445
18-3. Detectors = 448
18-4. Inter-Subband Absorption Tunneling Detectors = 453
18-5. Superlattice Photomultipliers = 456
18-6. Problems = 458
18-7. References = 460
Appendix Conversion of Units = 462
Glossary of Symbols = 464
Index = 473